CN110383302A  Small Maastricht Treaty Rana Fermi's subcode  Google Patents
Small Maastricht Treaty Rana Fermi's subcode Download PDFInfo
 Publication number
 CN110383302A CN110383302A CN201880014373.0A CN201880014373A CN110383302A CN 110383302 A CN110383302 A CN 110383302A CN 201880014373 A CN201880014373 A CN 201880014373A CN 110383302 A CN110383302 A CN 110383302A
 Authority
 CN
 China
 Prior art keywords
 code
 stabilizer
 quantum
 rana
 maastricht treaty
 Prior art date
 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
 Pending
Links
 239000003381 stabilizer Substances 0.000 claims abstract description 166
 241000269435 Rana <genus> Species 0.000 claims abstract description 122
 238000004364 calculation method Methods 0.000 claims abstract description 25
 239000002096 quantum dot Substances 0.000 claims description 74
 238000000034 method Methods 0.000 claims description 24
 230000015654 memory Effects 0.000 claims description 19
 230000000875 corresponding Effects 0.000 claims description 14
 230000008929 regeneration Effects 0.000 claims 1
 238000011069 regeneration method Methods 0.000 claims 1
 238000005516 engineering process Methods 0.000 abstract description 27
 201000010874 syndrome Diseases 0.000 description 20
 238000004422 calculation algorithm Methods 0.000 description 13
 238000004891 communication Methods 0.000 description 7
 238000006243 chemical reaction Methods 0.000 description 4
 238000010276 construction Methods 0.000 description 4
 238000010586 diagram Methods 0.000 description 4
 230000000694 effects Effects 0.000 description 4
 238000005295 random walk Methods 0.000 description 4
 238000011105 stabilization Methods 0.000 description 4
 239000000969 carrier Substances 0.000 description 3
 238000005259 measurement Methods 0.000 description 3
 239000007787 solid Substances 0.000 description 3
 238000004458 analytical method Methods 0.000 description 2
 238000009954 braiding Methods 0.000 description 2
 230000001276 controlling effect Effects 0.000 description 2
 230000001808 coupling Effects 0.000 description 2
 238000010168 coupling process Methods 0.000 description 2
 238000005859 coupling reaction Methods 0.000 description 2
 239000011159 matrix material Substances 0.000 description 2
 230000004048 modification Effects 0.000 description 2
 238000006011 modification reaction Methods 0.000 description 2
 230000001902 propagating Effects 0.000 description 2
 FCSHMCFRCYZTRQUHFFFAOYSAN Thiocarbanilide Chemical compound   C=1C=CC=CC=1NC(=S)NC1=CC=CC=C1 FCSHMCFRCYZTRQUHFFFAOYSAN 0.000 description 1
 229910002056 binary alloy Inorganic materials 0.000 description 1
 230000001419 dependent Effects 0.000 description 1
 230000005611 electricity Effects 0.000 description 1
 230000005662 electromechanics Effects 0.000 description 1
 239000004744 fabric Substances 0.000 description 1
 238000007689 inspection Methods 0.000 description 1
 230000005012 migration Effects 0.000 description 1
 230000000051 modifying Effects 0.000 description 1
 230000001264 neutralization Effects 0.000 description 1
 230000001737 promoting Effects 0.000 description 1
 238000005096 rolling process Methods 0.000 description 1
 239000002965 rope Substances 0.000 description 1
 230000002104 routine Effects 0.000 description 1
 238000010845 search algorithm Methods 0.000 description 1
 230000011218 segmentation Effects 0.000 description 1
Classifications

 H—ELECTRICITY
 H03—BASIC ELECTRONIC CIRCUITRY
 H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
 H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
 H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
 H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
 H03M13/13—Linear codes
 H03M13/19—Single error correction without using particular properties of the cyclic codes, e.g. Hamming codes, extended or generalised Hamming codes

 G—PHYSICS
 G06—COMPUTING; CALCULATING; COUNTING
 G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
 G06N10/00—Quantum computers, i.e. computer systems based on quantummechanical phenomena
Abstract
Disclosed technology is related to tool and technology for realizing error correcting code in quantum calculation equipment.In a particular embodiment, the Maastricht Treaty Rana fermion stabilizer code with a small amount of mode and distance is disclosed.Specific embodiment has the upper limit of the logic quantum digit of 4 code of distance, and constructs the Maastricht Treaty Rana Fermi's subcode for being saturated the boundary.Also disclose other codes of distance 4 and 6.
Description
Technical field
Disclosed technology is related to quantum calculation equipment and the mechanism for correcting errors for this equipment.
Summary of the invention
Disclosed technology is related to tool and technology for realizing error correcting code in quantum calculation equipment.In particular implementation
In example, the Maastricht Treaty Rana fermion stabilizer code with a small amount of mode and distance is disclosed.Specific embodiment has 4 generation of distance
The upper limit of the logic quantum digit of code, and construct the Maastricht Treaty Rana Fermi's subcode for being saturated the boundary.Also disclose it
His code of distance 4 and 6.For the physics Maastricht Treaty Rana mode of given number, these codes are understood to have as much as possible
Logic quantum bit.It is some with than Maastricht Treaty Rana any derived from quantum bit stabilizer code fermion generation in these codes
The more logic quantum bits of code.
In some embodiments, topological quantum computer is configured with Maastricht Treaty Rana null mode and realizes quantum calculation.
In some implementations, one group of N_{maj}A Maastricht Treaty Rana null mode is configured as obtaining the code space with K logical bit, wherein K
Less than N_{maj}, and wherein code space is formed by series of stable device, and this series of stabilizer is formed in Maastricht Treaty Rana null mode
Between and be configured as providing error correction during quantum calculation for Maastricht Treaty Rana null mode.
In a further embodiment, quantum calculation equipment is configured as in Topological Quantum infrastructure via Maastricht Treaty Rana
Null mode realizes that logic quantum bit, Maastricht Treaty Rana null mode are arranged to realize one group of physics quantum bit, this group of physics quantum bit
State recoverable between physics quantum bit series of stable device generate logic quantum bit.
In some example embodiments, the Hamming Maastricht Treaty Rana code for being used for quantum calculation equipment is generated.In an example
In realization, multiple available Maastricht Treaty Rana null modes are inputted, input the stabilizer of desired number, and according to the stabilization of desired number
Device generates for realizing one or more Hamming Maastricht Treatys Rana code of the stabilizer with available Maastricht Treaty Rana null mode.Showing
During example is realized, the generation of Hamming Maastricht Treaty Rana code is at least partly executed using random search procedure.In some implementations, the Chinese
The generation of bright Maastricht Treaty Rana code is at least partly with constraint distance (for example, 4,6 or any other suitable distance) Lai Zhihang.
Systems, devices and methods described herein should not be construed as limiting in any way.On the contrary, this public affairs
It opens and is related to all novel and the nonvery clear features and aspect of various disclosed embodiments, individually and with mutual various
Combination and subportfolio.Disclosed system, method and apparatus are not limited to any particular aspects or feature or combinations thereof, and institute is public
System, the method and apparatus opened do not require the existence of any one or more specific advantages yet or solve the problems, such as.Any theory of operation
It is provided to convenient for explaining, but disclosed system, method and apparatus are not limited to this theory of operation.
Detailed description of the invention
Fig. 1 (A) is the block diagram for showing the stabilizer of 16 Maastricht Treaty Rana codes derived from 4 quantum bit codes.
Fig. 1 (B) is to show N_{maj}The block diagram 102 of the stabilizer of=16 Hamming Maastricht Treaty Rana code.
Fig. 2 shows the generalized examples for the suitable calculating environment that several described embodiments wherein may be implemented.
Fig. 3 show for realizing according to the possible network topology of the system of disclosed technology (for example, client take
Be engaged in device network) example.
Fig. 4 show for realizing according to the possible network topology of the system of disclosed technology (for example, distributed count
Calculate environment) example.
Fig. 5 shows for realizing the exemplary system of disclosed technology.
Fig. 6 is according to the embodiment of disclosed technology for generating Hamming Maastricht Treaty Rana code for quantum calculation equipment
Exemplary method flow chart.
Specific embodiment
I. general Consideration
As used in this application, one (a) of singular, one (an) and should (the) include plural form, remove
Non context is otherwise expressly specified.In addition, term includes (includes) indicates to include (comprises).In addition, term " coupling
Close " it is not excluded between coupling terms that there are neutral elements.In addition, as used in this article, term and/or (and/or) indicate phrase
Any one of project or any project combination.
Although presenting for convenience, order describes the operation of some disclosed methods in a particular order, answers
Work as understanding, this describing mode includes rearranging, unless the languagespecific being described below needs specific sequence.For example,
In some cases, the operation of sequence description can be rearranged or is performed simultaneously.In addition, for simplicity, attached drawing may be not
Disclosed system is shown, the various modes that method and apparatus can be used in combination with other systems, method and apparatus.In addition,
The description describes disclosed method using the terms such as product and offer sometimes.These terms are performed reality
The highlevel abstractions of operation.Practical operation corresponding to these terms will change according to specific implementation, and this field is common
Technical staff can easily verify that.
II. the brief introduction of disclosed technology
Quantum bit stabilizer code is a series of basic skills for constructing Quantum Error Correcting Codes.These codes use given number
N_{qub}A physics quantum bit constructs K logic quantum bit of small number.Code space be it is several mutually to easy operator+1
Eigenspace.These operators are known as stabilizer, and are considered as the product of Pauli operator.D.Gottesman,arXiv
preprint quantph/9705052(1997).Maastricht Treaty Rana Fermi's subcode is the natural variant of stabilizer code, wherein
Stabilizer is considered as the product of Maastricht Treaty Rana operator.Referring to Bravyi, B.M.Terhal, and B.Leemhuis, New
Journal of Physics 12,083039(2010).Maastricht Treaty Rana code does not use quantum bit as degree of physical freedom, and
It is using given number N_{maj}A Maastricht Treaty Rana mode come obtain with K logic quantum bit code space (referring to underneath with
Quantum bit comes authentication code space).
Quantum bit stabilizer code can be converted to Maastricht Treaty Rana Fermi's subcode, with Maastricht Treaty Rana Fermi's subcode
Attribute (including distance, the weight of the number of logic quantum bit and generator), this is specifically dependent upon the category of original stable device code
Property.Referring to Bravyi, B.M.Terhal, and B.Leemhuis, New Journal of Physics 12,083039
(2010)；A.Kitaev,Annals of Physics 321,2(2006).Additionally, there are cannot be obtained by this conversion process
Other Maastricht Treaty Rana Fermi's subcodes taken.Referring to A.Kitaev, Annals of Physics 321,2 (2006).
In the disclosure, disclosing cannot be from Maastricht Treaty Rana Fermi's subcode of quantum bit stabilizer Code obtaining.In addition,
Emphasis is small code.That is, the disclosure does not study the asymptotic attribute with a large amount of physics Maastricht Treatys Rana mode, examine
Considering has small N_{maj}And the code of expectation (or best) distance d is obtained for giving K.
A motivation for studying small Maastricht Treaty Rana Fermi's subcode is that the realization of Maastricht Treaty Rana may have in physical equipment
Lowdown error rate.Referring to T.Karzig, C.Knapp, R.Lutchyn, P.Bonderson, M.Hastings, C.Nayak,
J.Alicea,K.Flensberg,S.Plugge,Y.Oreg,et al.,arXiv preprint arXiv:1610.05289
(2016).Although these modes may have sufficiently low error rate, therefore not need code, it is contemplated that certain is opposite
Lower error rate.For this low error rate, it is also very desirable to dedicated low distance code as described herein.
In some cases, small Maastricht Treaty Rana Fermi's subcode disclosed herein is in N_{maj}, between d, K have nonconvention
The compromise thought.These codes and Hamming code are closely related.In other cases, tool is identified using cumputerassisted survey technology
The code for thering is expectation to trade off.
III. Maastricht Treaty Rana stabilizer code
A. Hilbert space, code space and stabilizer group
Consider that there is N_{maj}The system of a Maastricht Treaty Rana fermion operator.These Maastricht Treaty Rana fermion operators can be with
Use γ_{a}It indicates, wherein a ∈ 1 ..., N_{maj}.They obey anticommutation
{γ_{a}, γ_{b}The δ of }=2_{A, b} (III.1)
It is assumed that N_{maj}It is even number.The minimum Hilbert space compatible with these anticommutations has dimensionAnd the dimension of this Hilbert space that will be considered as system.Maastricht Treaty Rana Fermi's subcode is this Xi Er
The subspace in Bert space.
The disclosure also considers Maastricht Treaty Rana Fermi's subcode with stabilizer form, therefore there are several operators, claim
For " stabilizer ", so that code space (subspace of the Hilbert space of description valid code word) is in these operators
Each space for assuming some given characteristic value.Each of these operators are even number Maastricht Treaty Rana fermion operators
Product；Physically, them is selected to correspond to boson operator so as to them.If the operator number in product is equal to 2mod
4, then operator is antiHermitian, and possible characteristic value is+i ori, and if the operator number in product is equal to 0mod 4,
Then operator is Hermitian and possible characteristic value is+1 or 1.In addition, in a particular embodiment, can choose all these fortune
Operator is mutually to easy.Therefore, as code sample, N can be used_{maj}=6 and have stabilizer γ_{1}γ_{2}γ_{3}γ_{4}γ_{5}γ_{6}
And γ_{1}γ_{2}System.
Stabilizer generates one group of stabilizer group, is the group generated by stabilizer product.Take in the group with the identity at
The quotient of all elements of ratio is (for example, all elements are equal to 1； 1) providing hasThe group of a element, wherein N_{stab}It is raw
At the minimum stabilizer number of the group.That is, if for example providing a stabilizer list γ_{1}γ_{2}γ_{3}γ_{4}γ_{5}γ_{6}With
γ_{1}γ_{2}And γ_{3}γ_{4}γ_{5}γ_{6}, then the group has N_{stab}=2 (although there are 3 stabilizers in list), because it is steady by 2
Determine device and generates (in fact, any two stabilizer from the list is sufficient).
It is N that a kind of method for understanding the group, which is using length,_{maj}Bit string mark stabilizer group each element.If fortune
Operator γ_{a}In the given element of stabilizer group, then it will be present 1 in the α entry of bit string.Therefore, in N_{maj}=6 the case where
Under, operator γ_{1}γ_{2}String 110000 will be corresponded to.The symbol of operator is unrelated with bit string, therefore γ_{1}γ_{2}Withγ_{1}γ_{2}=γ_{2}
γ_{1}Corresponding to identical bit string.The bit string can equally be considered asIn vector.In view of two operator O1；O2 has
Corresponding bit string b_{1}、b_{2}, product O_{1}O_{2}Bit string b will be corresponded to_{1}+b_{2}, wherein addition existsIn.Therefore, stabilizer group isCertain subspaces, having a size of N_{stab}。
Therefore, Maastricht Treaty Rana Fermi subcode will correspond toSubspace, wherein requiring any two in subspace
The inner product of a vector is equal to 0；In the language of classical coding theory, these subspaces are selforthogonal codes (note that in Maastricht Treaty Rana
In the case where son, this subspace representation stabilizer, and in the case where classical coding theory, it is interpreted code word space).
In order to see this point, it is noted that any vector and the inner product of its own in subspace are necessary for zero (because stabilizer is even number
The product of a Maastricht Treaty Rana operator).The inner product of any two difference vector also must be as follows in subspace: recalling, surely
Determine any pair of operator O in device group_{1}、O_{2}It must be mutually to easy.It can be to easy O_{2}To O_{1}Each operator γ by_{a}And
Track total symbol；If γ_{a}Also in O_{1}In, then γ_{a}With O_{1}To easy, otherwise it is to easily (this is because O_{1}It is drawn with even number Maastricht Treaty
Operator is received, so if γ_{a}In O_{1}In, then in O_{1}In have odd number operator and γ_{a}To easily)；So if it is O_{1}、O_{2}It is right
Easily, then it all includes 1 that corresponding bit string, which has even number position,.
The dimension of code space is equal to
And:
K=N_{maj}/2N_{stab}, (III.2)
And K is referred to as the number of " logic quantum bit ".
Logical operator is the product of Maastricht Treaty Rana operator, all operators in it and stabilizer group to easily but it
In itself not in stabilizer group.Such as New Journal of Physics 12,083039 (2010) institute of S.Bravyi et al.
Show, 2K logical operator X can be found_{1}、……、X_{K}、Z_{1}、……、Z_{K}, these logical operators are in accordance with common Pauli pair
Easy relationship.This has just drawn the saying of K logic quantum bit.
B. distance
" weight " of operator is the Hamming weight of corresponding bit string.The distance of code is defined as all nontrivial logic fortune
The minimum value of the weight of operator (here, nontrivial expression does not correspond to unitdistance code symbol).
Following discussion will be related to socalled " fermion evenodd check " operatorIn stabilizer group
The case where.Therefore, when the optimal property of identifying code, the case where such case will be considered.As a result, all logical operations
Symbol has uniform weight (otherwise, they will not be with fermion evenodd check to easily), therefore the distance of code is even number and extremely
It is less 2.There are two motivations to require fermion parity arithmetic symbol in stabilizer group.Firstly, since rechargeable energy effect, object
Reason is realized can generate its code in stabilizer group naturally.Referring to the Physical Review of L.A.Landau et al.
Letters 116,050501(2016),1509.05345；" the Roadmap to Maastricht Treaty Rana a of S.Plugge et al.
surface codes"arXiv:1606.08408；S.Vijay et al. " Braiding without Braiding:
TeleportationBased Quantum Information Processing with Maastricht Treaty Rana a Zero Modes "
(2016)arXiv:1609.00950；" Maastricht Treaty Rana a box qubits " arXiv:1609.01697 of S.Plugge et al.；
And the Physical Review B 88,035121 (2013) of T.Hyart et al..Secondly, if not different fermion
Evenodd check can not just establish the superposition of state.On the contrary, in the New Journal of Physics 12 of S.Bravyi et al.,
In 083039 (2010), it is proposed that the code with odd number weight logic operator can be protected by combinatorial topology and evenodd check
And there is better error correction characteristic.
Enable K_{mar}(N_{maj}, d) and indicate that there is N_{maj}The largest possible number thereof of the code of a physics Maastricht Treaty Rana mode and distance d
Logic quantum bit (on all possible code).Code with distance d, which can detecte, acts on less than d Maastricht Treaty Rana
Any mistake of mode, and can be with role of correcting in any mistake for being less than d=2 Maastricht Treaty Rana mode.Distance d=2's
Code is not particularly useful: they cannot correct the mistake in the mode of single Maastricht Treaty Rana；This d=2 code most simply shows
Example is to accord with stabilizer group by fermion parity arithmetic to generate, so as to all even number weight operators and stabilizer
Group is to easy, without odd number weight operator with stabilizer group to easy.In the disclosure, it discloses and has studied with small distance
The code sample of (for example, d=4 and d=6).
N_{maj}In digital K_{max}It does not reduce:
K_{max}(N_{maj}+ 2, d) >=K_{max}(N_{maj}, d). (III.3)
In order to see this point, consider that there is N_{maj}The code C of a physics Maastricht Treaty Rana s and K logic quantum bit.Pass through
The stabilizer group of C' is set (to act on the N of C' by the stabilizer C of C_{maj}The first N in+2 physics Maastricht Treaty Rana s_{maj}Operator) with
And by operatorIt generates, is N_{maj}+ 2 physics Maastricht Treaty Rana s define new code C'.Then,
With the stabilizer group of C' to any product of easy Maastricht Treaty Rana operator must be O orShape
Formula, wherein O be C logical operator or O be C stabilizer group.If O is logical operator (stabilization of the O in C of C
In device group), then O andAll in the stabilizer group of C'.If O is logical operator, it must have
There is the weight of the distance at least equal to C, therefore C' has distance identical with C.
On the contrary, given N_{maj}Code C' on a Maastricht Treaty Rana s, with weight be 2 stabilizer group element, then this
The element of sample is equal to (after it may reflag Maastricht Treaty Rana operator)And C' can be used
The construction of section is by with N_{maj}The code C of 2 Maastricht Treaty Rana operators is formed.
If claiming horse there are nontrivial (not proportional to unitdistance code symbol) element that weight is less than d in stabilizer group
About Rana Fermi subcode is " degeneracy ", is otherwise called nondegenerate.
C. from Maastricht Treaty Rana Fermi's subcode of quantum bit stabilizer code
In this section, the construction of Maastricht Treaty Rana Fermi's subcode of given quantum bit stabilizer code has been looked back.Given tool
There is N_{qub}The quantum bit stabilizer code of a quantum bit, constructs N as follows_{maj}=4N_{qub}Maastricht Treaty Rana Fermi's subcode.For amount
Each quantum bit i of sub position stabilizer code, definition is by ((i, a) the 4 Maastricht Treaty Rana fermions marked, wherein a ∈
(1 ..., 4 }.According to some embodiments, the stabilizer group of Maastricht Treaty Rana Fermi's subcode is generated by following stabilizer.Firstly, right
In each i, one has stabilizer γ_{(i, 1)}γ_{(i, 2)}γ_{(i, 3)}γ_{(i, 4)}.Four Maastricht Treaty Rana fermion i, a have four Vichys that
Bert space, but+1 eigenspace of the stabilizer is only two dimension, therefore corresponds to quantum bit.It is then possible to use γ_{(i, 1)}
γ_{(i, 2)}Identify the operator X in quantum bit code_{i}, and use γ_{(i, 1)}γ_{(i, 3)}Identify operator Z_{i}.Then, for quantum bit
Each stabilizer of code, can be by respectively with γ appropriate_{(i, 1)}γ_{(i, 2)}Or γ_{(i, 1)}γ_{(i, 3)}Replace each X_{i}Or Z_{i}, by this
Stabilizer is mapped to the stabilizer of Maastricht Treaty Rana Fermi's subcode.
Such as the New Journal of Physics 12,083039 (2010) of S.Bravyi et al. and A.Kitaev
Shown in Annals of Physics 321,2 (2006), the distance of obtained Maastricht Treaty Rana Fermi's subcode is that quantum bit is steady
Twice for determining the distance of device code.
IV. d=4 code of distance: analysis result
In this section, considers the code of distance d=4 and provide analysis result.In the next section, it gives to d=4
The result of the numerical search of code and d=6 code.
A. the upper limit
It enablesIndicate that there is distance N_{maj}The logic quantum bit of the degeneracy code of a physics quantum bit and distance d
Maximum number, and enableIndicate that there is N_{maj}The logic of the nondegenerate code of a physics quantum bit and distance d
The maximum number of quantum bit.For the degeneracy code of d=4, it is necessary to which therefore the element there are weight for 2 stabilizer group passes through
Discussion below equation III.3, one hasIn turn, ifThen K_{max}(N_{maj} 2,4)=K_{max}(N_{maj} 4,4).In this way into
Row, it can be found that
Further,
So
Accordingly, it is determined that all M≤N_{maj}'sTo determine K_{max}(N_{maj}, 4) and it is sufficient, now will
It is considered.
Further,
In order to see this point, it is noted that in nondegenerate code, weight is any nontrivial operator of t < d all by nothing
Method is at least one stabilizer to easy.Operator is not known as " wrong syndrome " to one group of easy stabilizer generator therewith.This
It is N that a set, which can be written as length,_{stab}Bit string, or equally, beIn vector.For d=4, this indicates a
Any operator γ of ≠ b_{a}γ_{b}With weight t=2 < d=4, and therefore, the operator has nontrivial wrong syndrome (this
In, nontrivial indicates that the syndrome includes at least one generator).In addition, operator γ_{a}And γ_{b}Also with the mistake of nontrivial
Syndrome, therefore γ_{a}γ_{b}Wrong syndrome with nontrivial, γ_{a}And γ_{b}Wrong syndrome must be different because
The error syndrome of the product of two operators is the summation of wrong syndrome, is considered asIn vector.Therefore, a
∈ { 1 ..., N_{maj}Each of single Maastricht Treaty Rana operator γ_{a}Corresponding to a kind of unique wrong syndrome.There are N_{stab}It is a
Generator, therefore existA nontrivial wrong syndrome.However, a generator is fermion evenodd check, and
And all single Maastricht Treaty Rana operator γ_{a}All oppose with the operator easily, therefore single Maastricht Treaty Rana operator only has(wrong syndrome will be very important a possible wrong syndrome forever, because of any single Maastricht Treaty Rana
Operator and fermion evenodd check are opposed easy).Therefore, for nondegenerate code,Use equation
(III.2), this indicates equation (IV.4).
It is single that another kind, which treats the method that each single Maastricht Treaty Rana operator necessarily corresponds to unique wrong syndrome,
Maastricht Treaty Rana operator mistake is repairable, therefore for nondegenerate code, it has to be possible to determine the mistake from the syndrome
Accidentally.
In view of equation (IV.4) and equation (IV.3), it is known that
B.N_{maj}=2^{m}" Hamming Maastricht Treaty Rana code "
It is believed that for any N_{maj}, K can be used to be configured to the code for being saturated this inequality (IV.5).
After all, it appears that always can choose stabilizer, so that the enough information of wrong syndrome offer is any single to uniquely identify
Maastricht Treaty Rana Fermi's suberror is (to ensure that each single Maastricht Treaty Rana fermion operator has unique wrong syndrome.) but
It is that limitation stabilizer must be boson and mutually it must be made for specific N Yi Caineng_{maj}It cannot achieve.It is small at this
In section, N is shown_{maj}Be 2 power specific condition under inequality be saturation:
For m=3, the construction of this section will provide the code of K=0, but have for each single Maastricht Treaty Rana error
Unique syndrome.
The code word constructed and classical Hamming code are closely related, referred to as " Hamming Maastricht Treaty Rana code ".
Stabilizer group can be generated by the different stabilizer of m kind, be labeled as S_{1}、S_{2}、……、S_{m}With fermion odd even school
Operator is tested, so that N_{stab}=m+1.Stabilizer S_{m}It will be all operator γ_{a}Product so that m of binary α 1
Equal to 1 (m are to start counting from the right, therefore first is most unessential, and so on；Execute the sequence counted
It is arbitrary completely, but for ease of description, it is executed from the right).Note that the range of α 1 is from 0 to N_{maj}1.Therefore,
In the case where m=4, following matrix is considered:
Matrix S is 16 matrixes for multiplying 4.The different Maastricht Treaty Rana operator of X line flag and the m different stabilizer of label
S_{1}、……、S_{4}Column.Thus, for example, operator γ_{13}The 12nd row corresponding to the table；In binary system, 12 be 1100, therefore
Stabilizer S_{3}And S_{4}Including operator γ_{13}。
It is obvious that the selection of this stabilizer makes every kind of γ_{a}As unique wrong syndrome.Stablize in fact, violating
The mode of device is provided by the binary representation of α.In addition, each S_{i}Weight be 2^{m1}, therefore there is uniform weight in m >=2.
Any couple of S of given i ≠ j_{i}、S_{j}, in S_{i}And S_{j}In operator γ_{a}Number be equal to 2^{m2}, therefore be also such for m >=3.
Therefore, for m >=3, that define valid codes.
For m=4, that define code N_{maj}=16, K=3, d=4.It is interesting that it and 16 Maastricht Treaty Ranas are taken
Another code on meter Zi is compared.There are 4 quantum bit codes, distance has stabilizer X for 2,2 logic quantum bits_{1}X_{2}X_{3}X_{4}
And Z_{1}Z_{2}Z_{3}Z_{4}.The mapping of Section III C portion is applied to this 4 quantum bit code, obtains Maastricht Treaty Rana Fermi's subcode, N_{maj}
=16, K=2, d=4.Figure 1A and 1B is the schematic block Figure 100 for showing the stabilizer of the two codes, 102.
Being otherwise noted that on 4 physics quantum bits does not have quantum bit stabilizer code, and distance is 2 and 3 logic quantum bits.
Therefore, there is N as obtained from from quantum bit stabilizer code mapping_{maj}=16 Maastricht Treaty Rana Fermi's subcode have with
The logic quantum bit of Hamming Maastricht Treaty Rana code as many.
More specifically, Fig. 1 (A) is the stabilizer for showing 16 Maastricht Treaty Rana codes derived from 4 quantum bit codes
Block diagram 100.Each circle (such as representative circle 110,112) represents Maastricht Treaty Rana mode.Each round rectangle (by solid line or
Dotted line surrounds) indicate stabilizer；Stabilizer is included in the product of the Maastricht Treaty Rana operator in the mode of the rectangle inside.Have
6 independent stabilizers (stabilizer 121,122,123,124,125,126), therefore K=2.With dotted line (121,122,123,
124) round rectangle indicates that generator acts on 4 Maastricht Treaty Rana operators；These are the stabilizations of the mapping of Section III trifle C
Device γ_{I, 1}γ_{I, 2}γ_{I, 3}γ_{I, 4}。
Fig. 1 (B) is to show N_{maj}The block diagram 102 of the stabilizer of=16 Hamming Maastricht Treaty Rana code.Only N now_{stab}=
5 independent stabilizers (stabilizer 131,132,133,135,136).One of dotted line round rectangle in Fig. 1 (B) (stabilizer
133) all quantum bits are surrounded；This is parity arithmetic symbol.Solid round rectangle is identical in Fig. 1 (B) and in Fig. 1 (A)
's.Dotted line round rectangle in Fig. 1 (B) generates the subgroup of the dotted line round rectangle in Fig. 1 (A).
Equation IV.4 shows N_{maj}The code of≤10 and distance d=4 cannot all make K > 0.N will be shown in the next paragraph_{maj}
=12 code does not all have K > 0.For N_{maj}=14, numerical search is for N_{stab}=6 code executes (in the next section
Description) and do not succeed.Therefore it is believed that there is no such codes (it is believed that N_{maj}=16 be with d=4, the mode of K > 0
Minimal amount).
For N_{maj}=12, in order to make K > 0, it is necessary to have N_{stab}=5.It will demonstrate that now, this is impossible.Generator
First is that fermion parity arithmetic accord with.Call other generators g_{1}、g_{2}、g_{3}、g_{4}.In other stabilizers, it is necessary to have one
(referred to as g_{4}) weight be 4 (evidence: stabilizer have event weights, it is thus possible to important weight be 2,4,6,8,10.It can be with
By weight be w stabilizer multiplied by by fermion odd even operator to provide weight as the stabilizer of 12w.Therefore, it can be assumed that
Generator has weight 2,4,6.For nondegenerate code, there is weight 2 without generator, therefore can make generator that there is power
Weigh 4,6.There is weight 6 (so that their product is not fermion parity arithmetic symbol) in view of two different generators,
Their product must be 0mod 4 (because they to easy, they can act on even number mode), it is possible to false
Product is determined with weight 4).The stabilizer that given weight is 4 enables it for 9 γ of γ, 10 γ, 11 γ 12 without loss of generality.Have 8 can
The single Maastricht Treaty Rana mistake of energy and this stabilizer are to easy (the wrong γ in the mode of Maastricht Treaty Rana_{1}、……、γ_{8}), therefore need
Remaining 3 generator is wanted to uniquely identify these mistakes.The method of these mistakes of unique identification is (because there is 8 possible mistakes
It misses and 2^{3}A syndrome) be using the thing for being similar to Hamming Maastricht Treaty Rana code: remaining 3 stabilizer generators g1, g2,
G3 must be multiplied by γ_{9}、……、γ_{12}Some product preceding 8 modes on N_{maj}=8 Hamming Maastricht Treaty Rana code
Generator.These products are referred to as p_{1}、p_{2}、p_{3}, respectively；g_{a}Equal to multiplied by p_{a}Preceding 8 modes on Hamming Maastricht Treaty Rana generator.
Since g1, g2, g3 are mutually relatively easy, operator p_{1}、p_{2}、p_{3}Mutually to easy, further there is equal weight.Therefore, at most multiplied by
g_{4}, most pattern of rows and columns 9,10,11,12, operator p_{a}Equal to any unit operator or γ_{9}γ_{10}.Therefore, each Maastricht Treaty Rana
Mistake cannot all have unique syndrome.
V. the numeric search of other codes
This section describes the numeric search that other codes to d=4,6 carry out.It discusses since situation d=4, and
This describes algorithm.The algorithm is based on random ergodic code.Also describe some attributes of migration.Finally, being begged for for situation d >=6
The modification to algorithm has been discussed, and has given the result of d=6.
A. d=4 code of distance
Hamming Maastricht Treaty Rana code gives N_{maj}=16,32 4 code of distance with optimal K.For 18≤N_{stab}≤
30 N_{stab}Other values, numerical search is carried out to the code of other distances d=4.Search is executed for nondegenerate code.
Search is random search, is realized as follows.Given N_{maj}And N_{stab}Value.The algorithm search code, until it find away from
It is abandoned from the code for 4 or until it is in sufficiently large the number of iterations.One stabilizer generator will be fermion surprise
Even parity check operator, it is not explicitly stored, therefore actually algorithm only stores remaining N_{stab} 1 generator, it is fixed as it
The mode of adopted code.These N_{stab} 1 generator is referred to as " storage list ".
The list initialization of storage is γ_{1}γ_{2}And γ_{3}γ_{4}, and so on, until γ_{2}(N_{stab}1)1γ_{2}(N_{stab}1)。
In addition, as described above, there are fermion parity arithmetic symbols.This is an effective code (because all stabilizers all have
Have identical weight and each other to easily), but it only has distance 2.
Then, which is directed to some step iteration the following contents.Firstly, it randomly updates stabilizer.This be by with
What machine selected 4 kinds of different Maastricht Treaty Rana modes to complete.Enabling these modes is i, j, k, l.Then, it executes replacement:
γ_{i}→γ_{j}γ_{k}γ_{l}, (V.1)
γ_{j}→γ_{i}γ_{k}γ_{l}, (V.2)
γ_{k}→γ_{i}γ_{j}γ_{l}, (V.3)
γ_{l}→γ_{i}γ_{j}γ_{k}.(V.4) that is, it uses γ for each stabilizer generator in storage list_{j}
γ_{k}γ_{l}Replace the γ occurred every time_{i}.These replacements all execute parallel；That is γ_{i}γ_{j}By γ_{j}γ_{k}γ_{l}γ_{i}γ_{k}γ_{l}Replacement.
Note that not considering that (the different selection definition of symbol have identical d, N for the symbol of stabilizer generator_{stab}Code), therefore
Not tracking symbol during replacement.It is otherwise noted that the replacement will not change fermion parity arithmetic symbol.
The renewal process allows to execute quick random walk by different codes.The advantage of doing so is that generating every time
When fresh code, all guarantee that it is effective, or even with mutually to easy weight stabilizer, being drawn because replacement is maintained by Maastricht Treaty
The algebra for the anticommutation that operator of receiving is obeyed.
Another method of definition replacement is, if stabilizer generator includes odd number operator γ_{i}、γ_{j}、γ_{k}、
γ_{l}, then the generator is multiplied by γ_{i}γ_{j}γ_{k}γ_{l}, until symbol.The update can be used digitwise operation and quickly execute, will
Each stabilizer is stored as bit string, then carries out AND operation using mask bit strings, mask is in position corresponding with i, j, k, l
In (these masks can be all for i < j < k < l in advance for 1A selection is to calculate), then calculate 1 number；
If the number is odd number, mask bit strings can be used and carry out XOR operation.
Then, once generating fresh code, so that it may check whether it has distance 4.This can be again by digitwise operation
Come carry out.For i < j'sA nonidentity operation accords with γ_{i}γ_{j}, can be generated in bit corresponding with i, j and covered with 1
Code.Then can check each mask whether at least one anticommutative stabilizer generator；If it is, the distance of code
d>2.This can be carried out in the following manner: use bit string corresponding with generator carries out AND operation to mask, and counts
It calculates and whether there is odd number 1 in result.If finding the code of distance d > 2, process success；Otherwise, it can continue.
For each N_{maj}, attempt to increase N_{stab}Value until finding code.For example, for N_{stab}Each value, each
Pass through 10 in operation^{8}Step executes 2000 independent operatings.Only when all these operations failure, N_{stab}Value just will increase, then
The program of secondary trial.As a result it shows in tablei.The table show the best nondegenerate codes found；Note that K is with N_{maj}Right and wrong
Dull.Using the table and equation (IV.1), optimum code as shown in table it, and also by its with use Section III C trifle
Mapping is compared from the optimum code that quantum bit stabilizer code obtains.The generator of certain codes provides in annex.
As the test of algorithm, it is also for N_{maj}=32, N_{stab}=6 operations, wherein at 2000 times running 882 times
It is successfully found the code that distance is 4.Since it is known there are such code (Hamming Maastricht Treaty Rana code), this shows that algorithm will be
In the presence of find code.
B. the attribute of random walk
There are two noticeable characteristics for abovementioned random walk.Firstly, transition probability follows following balance in detail.Enable c table
The state for showing algorithm is the stabilizer list of storage.Enable P_{C, c '}It indicates general to the conversion of some other state c' from state c
Rate.Then, these probability follow detailed balance, because of P_{C, c '}=P_{C ', c}.In order to see this point, it is noted that if provide i, j, k,
Some selections of l lead to the conversion from c to c', then the identical selection of i, j, k, l lead to the conversion from c' to c.
Secondly, the list c of any storage is considered, so that list has N_{stab} 1 independent stabilizer, and make Fermi
Sub parity arithmetic symbol is not in the group generated by the stabilizer list stored.Show to deposit this there are a series of replacements
The list of storage becomes stabilizer listUntil possible horse
The about arrangement of Rana operator.In conjunction with detailed balance above, this expression is random to swim until the arrangement of Maastricht Treaty Rana operator
Walking finally to explore has given N_{stab}All possible codes, until the arrangement of Maastricht Treaty Rana operator.
Table I: it shows as N_{maj}The table of=the 16 ..., 30 nondegenerate codes found.16 value is Hamming Maastricht Treaty Rana generation
Code, the computer search that other codes are explained in text.Value N_{stab}It is given N_{maj}N_{stab}Minimum value, wherein having found
2 code of nondegenerate distance.Row with check mark indicates that the K value of the code is greater than and uses smaller N_{maj}Any code found；
These lines are for making Table II.
Consider the first stabilizer in list.It illustrates how to be become γ_{1}γ_{2}.Stabilizer cannot have weight
N_{maj}, because it is not equal to fermion odd even operator.If its weight arrives N 4_{maj}Between 2, then it can be found that i < j < k makes
Obtaining stabilizer includes γ_{i}、γ_{j}、γ_{k}, and l can be found, stabilizer is made not include γ_{1}.The case where with given i, j, k, l
It is lower to execute weight reduction 2 of the replacement by stabilizer.It is continued until that it has weight 2 in this way.Once there is weight 2, then
It can be become γ by arrangement_{1}γ_{2}。
The process can be repeated to the second stabilizer in list.For this discussion, stabilizer only considered to mode
γ_{3}、……γN_{maj}Effect.That is, being ignored in bit string with mode 1,2 corresponding positions, and " weight " is defined
For other digits of nonzero.The weight of stabilizer is necessarily less than N_{maj} 2, because fermion parity arithmetic symbol is not in the first two
In the group that stabilizer generates.As shown in upper section, i, j, k, l are found, selects 2 < i, j, k, l, to mitigate the weight of stabilizer, until
It is equal to 2.Then, once weight is equal to 2, so that it may replace, until stabilizer is equal to γ_{3}γ_{4}, may be multiplied by γ_{1}γ_{2}。
Table II: it shows as N_{maj}The table of=16 ..., 32 codes found, including degeneracy and nondegenerate code.The table is
Using the code for having check mark in Table I and use equation (IV.1) building.Last column (referred to as K_{qubit}And it only gives
N out_{maj}For the code of 4 multiple) be the distance 4 obtained from 2 quantum bit stabilizer code of distance Maastricht Treaty Rana Fermi's subcode
Maximum possible logic quantum digit；It is steady for obtaining quantum bit from the boundary of URL http://www.codetables.de
Determine the K of device code_{qubit}。
The process is suitable for the stabilizers such as third, the 4th.On jth stabilizer, preceding 2 positions (j1) in bit string are ignored,
And the weight of remaining bit reduces.Then application arrangement, until stabilizer is equal to γ_{2j1}γ_{2j}, may be multiplied by the early stage in list
Stabilizer.
The process is needed using arrangement.If N_{maj}>=5 (because it is in all interested situations), by equation (V.1)
The group of generation includes arrangement, therefore actually random walk explores all possible arrangement.In order to see that the group includes this
In the case of arrangement, consider five kinds of modes, γ_{1}、……、γ_{5}.Applicable equations (V.1) three times, use i=1, j=2, k=first
3, l=4, then i=2, j=3, k=4, l=5, last i=1, j=2, k=3, l=4.Then, upto symbol, effect are to reflect
It penetratesRetain γ simultaneously_{2}、γ_{3}、γ_{4}.Since any pair of Maastricht Treaty Rana s is to easily in this set, it is somebody's turn to do
Group includes all arrangements.
C. d=6 code of distance
The code of d=6 of adjusting the distance also has carried out numeric search.In this case, all possible code is searched
Rope, whether it degenerates.Using with search d=4 code word as algorithm.The generator list of storage with search d=4 phase
Same mode initializes.Identical equation (V.1) is for updating stabilizer generator to execute random ergodic code.But also
Store one group of generator for 2K independent logical operator.These are initialized to the logical operator of initial code,
Then it is also updated using equation (V.1).The list is used to check the distance of code.
Unique variation is how to test the distance of code.The code for being 6 due to finding distance, can check with weight
The operator that 4 operator and weight is 2, and due to that can also include degeneration code, it can check for
The operator that weight is 2 or 4, with all generators to easily and not at least one logical operator to easy.Check weight
It is identical (for each such operator to easy mode and the search mode of d=4 code for 2 or 4 operator and generator
Mask is stored, and mask and each generator carry out AND operation and the position in result counted).In order to use
Logical operator inspection will use the logical operator list of the code of storage, and reuse digitwise operation to easy.
The algorithm can use in an identical manner, to select given N_{maj}And increase N_{stab}Until finding d=6's
Code.As before, algorithm is run 2000 times, and each run needs 10^{8}Step, until abandoning and increasing N_{stab}.As a result it shows
In table iii, and compared with Maastricht Treaty Rana Fermi's subcode of optimum distance 6 derived from quantum bit stabilizer code.
The generator of these codes is shown in annex.
N_{maj}=20 code has and the identical quantum digit of code derived from quantum bit stabilizer code.In fact,
The Maastricht Treaty Rana Fermi's subcode (at least for the code of all rolling inspections) found is exported from quantum bit stabilizer code
Code.For N_{maj}=28, code has than the more logic quantum bits of code derived from quantum bit stabilizer code.?
In this case (at least for all operations checked), it is found that the code is 4 with a weight in stabilizer group
Stabilizer；Accordingly it is also possible to construct such code with 1 quantum bit and 24 Maastricht Treaty Rana fermions.For N_{maj}=
30, for the operation of all inspections, not having weight in stabilizer group is 4 stabilizer.
Table III: it shows as N_{maj}The table of≤32 optimum codes found.If given N_{maj}Table in be not present entry,
Then it is expressed as that there is smaller N in the optimum code and table that the Nmajhad is found_{maj}Code K. having the same.For example, using
N_{maj}=32 optimum codes found have N_{stab}=13, therefore K=3, wherein N identical as code shown in table_{maj}=30.
D=6 code of distance is not found, wherein N_{maj}<20.Only provide N_{maj}It is the code of 4 multiple, arranges K_{qubit}It provides from distance 3
The maximum possible logic quantum digit of 6 Maastricht Treaty Rana Fermi's subcodes derived from quantum bit stabilizer code；From URL
The boundary of http://www.codetables.de is used to obtain the K of quantum bit stabilizer code_{qubit}。
VI. further observation
Several small Maastricht Treaty Rana Fermi's subcodes have been described.It is interesting that there are its performances to be better than from quantum bit
The code of any code derived from code.Simplest one, N_{maj}=16 Hamming Maastricht Treaty Rana code is of virtually stabilization
Device group, the stabilizer group are the subgroups of the stabilizer group of Maastricht Treaty Rana code derived from 4 quantum bit codes.
Numeric search algorithm is also disclosed herein.Using digitwise operation, the search can be quickly run.It can be with
Similar numeric search is executed to quantum bit code.The basic thought of random search is to allow (to obey one group of effective stabilizer
Commutation rejection) be converted to another group of effective stabilizer；It, can be steady for quantum bit by application operating random from Clifford group
Determine the similar searching algorithm of device code construction.
If stabilizer can be measured directly, effective realization of this code may be implemented, for example, such as T.Hyart,
B.van Heck, I.Fulga, M.Burrello, A.Akhmerov and C.Beenakker, Physical Review B 88,
In the scheme of 035121 (2013) like that.One characteristic of these codes is each stabilizer (fermion parity arithmetic symbol
Except) can be write with two different nonoverlap modes.For example, in N_{maj}In the case where=16, operator γ_{1}、……、γ_{8}
With γ 9 ..., γ_{16}Unanimously, until fermion evenodd check.Therefore, it is identical to measure to provide two different methods for this
Stabilizer；These independent measurements can permit the influence for reducing measurement error.N_{maj}=16 Hamming Maastricht Treaty Rana codes have object
Removing the work office, as shown in Fig. 1 (A) and 1 (B), this can simplify these measurement in it is some because generator is included in partial zones
In domain (square or rectangle).
VII. annex
It A. is the table of the d=4 code found
Table IV is the table of some codes found using the numeric search of distance d=4.For nondegenerate code, show steady
Determine device, wherein N_{maj}=20,24,28,30.These are the codes that check mark is had in Table I.
Table IV: d=4 code of distance.Each code provides N_{stab} 1 stabilizer generator is N as length_{maj}Position
String；1 of some position in character string indicates that generator includes given Maastricht Treaty Rana operator.In addition, fermion odd even school
Testing operator (being not shown in table) is generator.
It B. is the table of the d=6 code found
In Table V, the table of the code found using the numeric search of distance d=6 is given.
Table V: d=6 code of distance.Each code provides N_{stab} 1 stabilizer generator is N as length_{maj}Position
String；1 of some position in character string indicates that generator includes given Maastricht Treaty Rana operator.In addition, fermion odd even school
Testing operator (being not shown in table) is generator.
VIII. general embodiments
This section describes several example embodiments of the embodiment for realizing disclosed technology.Disclosed tool
It should not be construed as limiting in any way with technology, because one or more of shown method movement can be independent
It executes or is executed with mutual various other combinations and subportfolio.In addition, disclosed method any one of act or
It is multiple to can use one or more other methods movements disclosed herein to execute.
Fig. 6 is according to the embodiment of disclosed technology for generating Hamming Maastricht Treaty Rana code for quantum calculation equipment
Exemplary method 600 flow chart.Illustrated embodiment should not be construed as limited to, because the movement of disclosed method is at certain
It can individually be executed in different order in a little situations, or at least partly execute simultaneously with one another.In addition, disclosed in any
Method or method movement can be executed with any other method disclosed herein or method movement.
In some embodiments, following methods are by being configured as communicating with quantum computer and controlling quantum computer
Classic computer executes.In addition, this method movement can be implemented as computer executable instructions, it when executed by a computer, should
Instruction causes computer to execute these methods.
At 610, multiple available Maastricht Treaty Rana null modes are inputted (for example, being buffered in memory or otherwise quasi
It is ready for use on and is further processed).
At 612, the stabilizer of desired number is inputted (for example, being buffered in memory or otherwise preparing to be used for
It is further processed).
At 614, generated according to the stabilizer of desired number for realizing the stabilization with available Maastricht Treaty Rana null mode
One or more Hamming Maastricht Treatys Rana code of device.In example implementation, the generation of Hamming Maastricht Treaty Rana code at least partly makes
It is executed with random search procedure.In some implementations, the generation of Hamming Maastricht Treaty Rana code is at least partly come with constraint distance
It executes.In some instances, constraint distance is 4；In other examples, constraint distance is 6.
At 616, determine whether the code building at 614 succeeds.If it is not, then being incremented by desired number at 618
Stabilizer, and repeatedly generate process.
Disclosed technology further includes a kind of topology of embodiment for being configured as realizing error correcting technique described herein
Quantum calculation equipment.For example, in some embodiments, topological quantum computer, which is configured with Maastricht Treaty Rana null mode, to be come in fact
Existing quantum calculation.In some implementations, one group of N_{maj}A Maastricht Treaty Rana null mode is configured as obtaining the generation with K logical bit
Code space, wherein K is less than N_{maj}, and wherein code space is formed by series of stable device, and this series of stabilizer is formed in horse
About between the null mode of Rana and it is configured as providing error correction during quantum calculation for Maastricht Treaty Rana null mode.
In some cases, the distance of code space is 4.For example, the stabilizer of code space can correspond to Table IV institute
Any code shown.In other cases, the distance of code space is 6.For example, the stabilizer of code space can correspond to table
Any code shown in V.
In other examples, in topological quantum computer there are 16 Maastricht Treaty Rana null modes, and it is independent there are 5
Stabilizer.In these exemplary specific implementations, 1 in 5 stabilizers includes all 16 Maastricht Treaty Ranas null mode, and
4 in 5 stabilizers include 6 corresponding Maastricht Treaty Rana null modes.
In some instances, K=N_{maj}=2N_{stab}, wherein N_{stab}It is the number of stabilizer.
Another example embodiment is a kind of quantum calculation equipment, is configured as in Topological Quantum infrastructure via horse
About Rana null mode realizes that logic quantum bit, Maastricht Treaty Rana null mode are arranged to realize one group of physics quantum bit, this group of physics
The state recoverable of quantum bit generates logic quantum bit with series of stable device between physics quantum bit.
In some cases, logic quantum bit and physics quantum bit are in the code space that distance is 4.For example, code is empty
Between stabilizer can correspond to any code shown in Table IV.
In other cases, logic quantum bit and physics quantum bit are in the code space that distance is 6.For example, code is empty
Between stabilizer can correspond to any code shown in Table V.
In other examples, there are 16 Maastricht Treaty Rana null modes, and there are 5 independent stabilizers.In specific reality
In existing, 1 in 5 stabilizers includes all 16 Maastricht Treaty Ranas null mode, and 4 in 5 stabilizers include 6 phases
The Maastricht Treaty Rana null mode answered.
In some instances, K=N_{maj}=2N_{stab}, wherein N_{stab}It is the number of stabilizer.
IX. example computing device
Fig. 2 shows the generalization for the suitable calculating environment 200 that several described embodiments wherein may be implemented to show
Example.Calculating environment 200, which is not intended to, proposes any restrictions to the use scope or function of disclosed technology, because described herein
Technology and tool can be realized in the various general or specialized environment with computing hardware.
With reference to Fig. 2, calculating environment 200 includes at least one processing equipment 210 and memory 220.In Fig. 2, the most base
This configuration 230 is included in dotted line.Processing equipment 210 (for example, CPU or microprocessor) executes computer executable instructions.
In multiprocessing system, multiple processing equipment executes computer executable instructions to increase processing capacity.Memory 220 can be
Volatile memory (for example, register, cache, RAM, DRAM, SRAM), nonvolatile memory (for example, ROM,
EEPROM, flash memory) or both certain combination.Memory 220, which stores, realizes the embodiment for realizing disclosed technology
The software 280 (for example, for realizing error correction quantum bit or being any disclosed technology of these circuit evolving codes) of tool.
Calculating environment can have other function.For example, it is defeated including storage equipment 240, one or more to calculate environment 200
Enter equipment 250, one or more output equipments 260 and one or more communication connections 270.Interconnection mechanism (not shown) is (all
Such as bus, controller or network) interconnect the component for calculating environment 200.In general, operating system software (not shown) is to calculate
The other software executed in environment 200 provide operating environment, and coordinate to calculate the activity of the component of environment 2800.
Storage equipment 240 can be moveable or immovable, and including one or more disks (for example, hard
Disk drive), solid state drive (for example, flash drive), tape or cassette, CDROM, DVD or any other is tangible non
Volatile storage medium can be used for storing information and can access calculating in environment 200.Storage equipment 240 may be used also
Storage generates for software 280 or realizes code disclosed herein (for example, any Maastricht Treaty Rana fermion generation as described herein
Code) instruction.
Input equipment 250 can be touch input device, such as keyboard, touch screen, mouse, pen, trace ball, voice input
Equipment, scanning device provide the other equipment of input to environment 200 is calculated.Output equipment 260 can be display equipment (example
Such as, computer display, laptop display, smart phone display, flatpanel monitor, net book display or touching
Touch screen), printer, loudspeaker or provide from calculate environment 200 output another equipment.
Communication connection 270 makes it possible to be communicated by communication media with another computational entity.Communication media is being modulated
The information such as computer executable instructions or other data are transmitted in datasignal.The datasignal of modification is can believe
The signal of one or more feature is set or changed in the mode encoded in number to information.As an example, not a limit, lead to
The wired or wireless technology that letter medium is realized including the use of electricity, light, RF, infrared, acoustics or other carriers.
As set forth above, it is possible to storing the general of computerreadable instruction on one or more computerreadable medium
Upper and lower described in the text is used to generate the various methods or compiling/synthetic technology of disclosed circuit.Computerreadable medium is can
With calculate in environment or by calculating environment access any usable medium (for example, memory or storage equipment).Computer can
It reads medium to include tangible computerreadable memory or store equipment, such as memory 220 and/or storage equipment 240, and not
Including propagating carrier wave or signal itself, (tangible computer readable memory or storage equipment do not include propagating carrier wave or signal sheet
Body).
The various embodiments of the methods disclosed herein can also be in the computer executed in a computing environment by processor
The general described in the text up and down of executable instruction those of (such as include in program module instruction).In general, program module packet
Include routines performing specific tasks or implementing specific abstract data types, program, library, object, class, component, data structure etc..?
In various embodiments, the function of combination or segmentation procedure module between program module can according to need.For program module
Computer executable instructions can be executed in local or distributed computing environment.
Depicted in Fig. 3 for realizing according to the possible network topology 300 of the system of disclosed technology (for example, visitor
Family end server network) example.Networked computing device 320 can be for example run browser or be connected to network 312 its
The computer of his software.Calculating equipment 320 can have the computer architecture as shown in Figure 2 and being discussed above.Calculating is set
Standby 320 are not limited to traditional personal computer, but may include being configured to connect to network 312 and leading to network 312
Other computing hardwares of letter are (for example, smart phone, laptop computer, tablet computer or other mobile computing devices, service
Device, the network equipment, special equipment etc.).In the shown embodiment, equipment 320 is calculated to be configured as setting via network 312 with calculating
Standby 330 (for example, remote server, server) in such as cloud computing environment communication.In the shown embodiment, equipment is calculated
320 are configured as input data being transferred to and calculate equipment 330, and calculate equipment 330 be configured as realizing it is disclosed herein
Any error correcting technique or code Generation, and by result be output to calculate equipment 320.From calculating, equipment 330 is received
Any data, which can store or be shown in, to be calculated in equipment 320 (for example, calculating graphic user interface or net at equipment 320
Data are shown as on page).In the shown embodiment, cable network can be used (for example, ethernet ieee mark in shown network 312
Standard 802.3 or other proper standards) or wireless network (for example, ieee standard 802.11a, 802.11b, 802.11g or
One of 802.11n or other standards appropriate) it is embodied as local area network (LAN).Alternatively, at least part of network 312 can be
Internet or similar public network, and operated using agreement appropriate (for example, http protocol).
Depicted in Fig. 4 for realizing according to the possible network topology 400 of the system of disclosed technology (for example, point
Cloth calculate environment) another example.Networked computing device 420 can be such as operation browser or be connected to network 412
The computer of other software.Calculating equipment 420 can have the computer architecture as shown in Figure 2 and being discussed above.Institute
Show in embodiment, calculates equipment 420 and be configured as via network 412 and multiple calculating equipment 430,431,432 (for example, longrange
Server or other distributive computing facilities, one or more servers in such as cloud computing environment) communication.In shown implementation
In example, each of calculating equipment 430,431,432 in environment 400 is calculated for executing any error correction skill disclosed herein
At least part of art or code Generation.In other words, it calculates equipment 430,431,432 and forms distributed computing environment,
Disclosed in technology between multiple calculating equipment share.Equipment 420 is calculated to be configured as input data being transferred to calculating
Equipment 430,431,432 calculates equipment 430,431,432 and is configured as realizing any error correction skill disclosed herein in a distributed manner
Art or code Generation, and result is provided to equipment 420 is calculated.It can from the received data of equipment 430,431,432 are calculated
Using store or be shown in calculate equipment 420 on (for example, as data be shown in calculate equipment 420 at graphic user interface or
On webpage).Shown network 412 can be any network above with respect to Fig. 3 discussion.
With reference to Fig. 5, the exemplary system for realizing disclosed technology includes calculating environment 500.Calculating environment 500
In, it may include for realizing the amount of any error correcting technique as disclosed herein that the quantum computer circuit of compiling, which describes,
Sub computer circuits, which describe data (for example, Maastricht Treaty Rana fermion code technique), can be used for programming (or configuration) one or more
A quantum treatment unit, so that quantum treatment unit is realized by the circuit of quantum computer circuit description description.As described above, amount
Any error correcting technique as discussed in this article may be implemented (for example, Maastricht Treaty Rana Fermi's subcode skill in sub computer circuits description
Art).
Environment 500 includes one or more quantum treatment units 502 and one or more readout equipments 508.Quantum treatment
Unit executes the quantum circuit that precompile and description are described by quantum computer circuit.Quantum treatment unit can be Topological Quantum
Framework (for example, using the topological quantum computation equipment of Maastricht Treaty Rana null mode).The quantum circuit of preprogrammed is (including for example any
Disclosed stabilizer) can be sent under the control of quantum processor controller 520 via control line 506 (or with other
Mode is applied to) quantum treatment unit.Quantum processor controller (QP controller) 520 can be with classical 510 (example of processor
Such as, having as above for the framework described in Fig. 2) binding operation to be to realize desired quantum calculation process.The example shown in
In, QP controller 520 is also real via one or more QP subcontrollers 504 particularly suitable for controlling corresponding quantum processor 502
Existing desired quantum calculation process.For example, in one example, Quantum control device 520 is by one or more memory (examples
Such as, lower temperature memory) realization for promoting to compile quantum circuit is sent the commands to, these instructions are then passed to low temperature control
Unit (for example, QP subcontroller 504), the pulse train for indicating door is for example transferred to quantum treatment unit by warm control unit
502 for realization.In other examples, QP controller 520 and the operation of QP subcontroller 504 are appropriate to provide to quantum processor
Magnetic field, encoding operation or other such control signals to realize the operation of the quantum computer circuit description of compiling.Quantum
Controller can be interacted further with readout equipment 508 to help to control and realize desired quantum calculation process (for example, passing through
The data result etc. of quantum treatment unit is read or measured if available).
With reference to Fig. 5, compiling be the advanced description of quantum algorithm is converted into include the sequence of quantum operation or door quantum
The process of computer circuits description, may include mechanism for correcting errors (for example, stabilizer), as disclosed herein.Compiling can be with
It is executed by the classical processor 510 of 522 use environment 500 of compiler, classical processor 510 is from memory or stores equipment
512 loads are advanced to be described and the description of obtained quantum computer circuit is stored in memory or storage equipment 512.
In other embodiments, compiling and/or Maastricht Treaty Rana fermion code building/realization can be by remote computers
500 (for example, the computers with the calculating environment as described in above for Fig. 2) longrange execution, remote computer 500 is by gained
To quantum computer circuit description be stored in one or more memories or storage equipment 562 in and by quantum calculation electromechanics
Road description and/or training instruction, which are transferred to, calculates environment 500 to realize in quantum treatment unit 502.In addition, remote computation
Advanced description and/or Maastricht Treaty Rana fermion code building (or realization) instruction can be stored in memory or storage by machine 500
In equipment 562, and by it is advanced description and/or instruction be transferred to calculate environment 500 so as to together with quantum processor compiling and
It uses.It, can be after calculating process and/or the calculating of period free quantum processor execution in the future in any of these scenes
Result be transmitted to remote computer.In addition, remote computer can be communicated with QP controller 520, so that quantum calculation process
(including any compiling, error correction and/or QP processor control process) can remotely be controlled by remote computer 560.In general, longrange
Computer 560 is communicated via communication connection 550 with QP controller 520 and/or compiler/synthesizer 522.
In a particular embodiment, environment 500 can be cloud computing environment, and by suitable network, (it may include mutual
Network) the quantum treatment resource of environment 500 is provided to one or more remote computers (such as remote computer 560).
X. conclusion
The principle of disclosed technology is describe and illustrated by reference to illustrated embodiment, it should be appreciated that can be not
Illustrated embodiment is modified in arrangement and details in the case where being detached from these principles.For example, with the illustrated embodiment shown in software
Element can use hardware realization, vice versa.Moreover, from any exemplary technology can with any one or more other
Technical combinations described in example.It should be appreciated that such as can be in single hardware with reference to the process and function of the description of shown example
Or it is realized in software module, or individual module can be provided.There is provided abovementioned specific arrangements be for ease of description, and can
To use other arrangements.
Claims (15)
1. a kind of system, comprising:
Topological quantum computation equipment；And
Classic computer, is configured as the topological quantum computation is communicated and controlled with the topological quantum computation equipment and sets
Standby, the classic computer includes memory and processor, and the classic computer is programmed to:
It is to realize quantum calculation using Maastricht Treaty Rana null mode by the topological quantum computation device configuration,
Wherein the configuration includes one group of N of configuration_{maj}A Maastricht Treaty Rana null mode to obtain the code space with K logical bit,
Wherein K is less than N_{maj}, and wherein the code space is formed by series of stable device, and the series of stable device is formed in institute
It states between the null mode of Maastricht Treaty Rana and is configured as entangling during the quantum calculation to the offer of Maastricht Treaty Rana null mode
It is wrong.
2. system according to claim 1, wherein the distance that the code space has for 4 or 6.
3. system according to claim 2 is appointed shown in Table IV or V wherein the stabilizer of the code space corresponds to
What code.
4. system according to claim 1, wherein there are 5 independent stabilizers for 16 Maastricht Treaty Rana null modes.
5. system according to claim 4, wherein 1 in 5 stabilizers includes all 16 Maastricht Treaty Ranas zero
Mode, and wherein 4 in 5 stabilizers include 6 corresponding Maastricht Treaty Rana null modes.
6. system according to claim 1, wherein K=N_{maj}/2N_{stab}, wherein N_{stab}It is the number of stabilizer.
7. a kind of computer implemented method of the generation Hamming Maastricht Treaty Rana code for being realized in quantum calculation equipment, packet
It includes:
Input multiple available Maastricht Treaty Rana null modes；
Input the stabilizer of desired number；And
It is generated according to the stabilizer of the desired number for realizing having the stabilizer that can use Maastricht Treaty Rana null mode
One or more Hamming Maastricht Treatys Rana code.
8. according to the method described in claim 7, wherein the generation is at least partly executed using random search procedure.
9. according to the method described in claim 7, wherein the generation is executed with constraining distance.
10. according to the method described in claim 9, wherein the constraint distance is 4 or 6.
11. if be incremented by the steady of the desired number according to the method described in claim 7, further include the failed regeneration
Determine device.
12. a kind of quantum calculation equipment is configured as in Topological Quantum infrastructure realizing via Maastricht Treaty Rana null mode and patrol
Quantum bit is collected, Maastricht Treaty Rana null mode is arranged to realize one group of physics quantum bit, the shape of one group of physics quantum bit
State, which can be corrected, generates the logic quantum bit with the series of stable device between the physics quantum bit.
13. quantum calculation equipment according to claim 12, wherein amount of logic position and the physics quantum bit exist
Distance is in 4 or 6 code space.
14. quantum calculation equipment according to claim 12, wherein for 16 Maastricht Treaty Rana null modes, solely there are 5
Vertical stabilizer.
15. quantum calculation equipment according to claim 14, wherein 1 in 5 stabilizers includes all 16
Maastricht Treaty Rana null mode, and wherein 4 in 5 stabilizers include 6 corresponding Maastricht Treaty Rana null modes.
Priority Applications (5)
Application Number  Priority Date  Filing Date  Title 

US201762464774P true  20170228  20170228  
US62/464,774  20170228  
US15/623,286  20170614  
US15/623,286 US10574268B2 (en)  20170228  20170614  Small Majorana fermion codes 
PCT/US2018/017733 WO2018160342A1 (en)  20170228  20180212  Small majorana fermion codes 
Publications (1)
Publication Number  Publication Date 

CN110383302A true CN110383302A (en)  20191025 
Family
ID=63251921
Family Applications (1)
Application Number  Title  Priority Date  Filing Date 

CN201880014373.0A Pending CN110383302A (en)  20170228  20180212  Small Maastricht Treaty Rana Fermi's subcode 
Country Status (4)
Country  Link 

US (1)  US10574268B2 (en) 
EP (1)  EP3566186A1 (en) 
CN (1)  CN110383302A (en) 
WO (1)  WO2018160342A1 (en) 
Families Citing this family (3)
Publication number  Priority date  Publication date  Assignee  Title 

WO2018132982A1 (en) *  20170118  20180726  深圳市汇顶科技股份有限公司  Codeword generation method, error bit determination method and circuit thereof 
WO2019100017A1 (en)  20171119  20190523  Microsoft Technology Licensing, Llc  Quantum spin hallbased charging energyprotected quantum computation 
US10496933B1 (en) *  20181219  20191203  Microsoft Technology Licensing, Llc  Robust Majorana magic gates via measurements 
Family Cites Families (4)
Publication number  Priority date  Publication date  Assignee  Title 

US9256834B2 (en) *  20130529  20160209  Microsoft Technology Licensing, Llc  Quantum computers having partial interferometric quantum gates 
US9412074B2 (en)  20130628  20160809  Microsoft Technology Licensing, Llc  Optimized trotterization via multiresolution analysis 
WO2015156869A2 (en) *  20140114  20151015  The Regents Of The University Of Michigan  Random number generation using untrusted quantum devices 
US10352992B1 (en) *  20160111  20190716  Rigetti & Co, Inc.  Quantum errorcorrection in microwave integrated quantum circuits 

2017
 20170614 US US15/623,286 patent/US10574268B2/en active Active

2018
 20180212 EP EP18707492.7A patent/EP3566186A1/en active Pending
 20180212 WO PCT/US2018/017733 patent/WO2018160342A1/en unknown
 20180212 CN CN201880014373.0A patent/CN110383302A/en active Pending
Also Published As
Publication number  Publication date 

US20180248566A1 (en)  20180830 
EP3566186A1 (en)  20191113 
WO2018160342A1 (en)  20180907 
US10574268B2 (en)  20200225 
Similar Documents
Publication  Publication Date  Title 

SalcedoSanz  Modern metaheuristics based on nonlinear physics processes: A review of models and design procedures  
Ezugwu et al.  Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem  
Schindler et al.  Quantum simulation of dynamical maps with trapped ions  
CN110383302A (en)  Small Maastricht Treaty Rana Fermi's subcode  
Shin et al.  Fully scalable methods for distributed tensor factorization  
Noel  A new gradient based particle swarm optimization algorithm for accurate computation of global minimum  
US20190080255A1 (en)  System, method and computer readable medium for quassical computing  
LanzaGutierrez et al.  Analyzing the effects of binarization techniques when solving the set covering problem through swarm optimization  
Hidary  Quantum Computing: An Applied Approach  
Chen et al.  Learning fuzzy cognitive maps from data by ant colony optimization  
Rocchetto et al.  Stabilizers as a design tool for new forms of the LechnerHaukeZoller annealer  
CN109478256A (en)  For the method and system of the Superconducting Quantum position system indicated with Hamiltonian polynomial on bounded integer field to be arranged  
Yang et al.  Multiuniverse parallel quantum genetic algorithm its application to blindsource separation  
McCaskey et al.  Validating quantumclassical programming models with tensor network simulations  
Pawela et al.  Generalized open quantum walks on apollonian networks  
Tahmassebi et al.  Multistage optimization of a deep model: A case study on ground motion modeling  
Gong et al.  Multiobjective sparse nonnegative matrix factorization  
Jiang et al.  Spiking neural P systems with antispikes working in sequential mode induced by maximum spike number  
Say et al.  Compact and efficient encodings for planning in factored state and action spaces with learned Binarized Neural Network transition models  
Arza et al.  Kernels of Mallows Models under the Hamming Distance for solving the Quadratic Assignment Problem  
Mendoza et al.  Reverse engineering of grns: An evolutionary approach based on the tsallis entropy  
Su et al.  Multiobjective differential evolution for truss design optimization with epistemic uncertainty  
Mohammadzadeh  Physical design of quantum circuits in ion trap technology–A survey  
Wu et al.  Discrete teachinglearningbased optimization algorithm for traveling salesman problems  
Krömer et al.  Data Parallel density‐based genetic clustering on CUDA Architecture 
Legal Events
Date  Code  Title  Description 

PB01  Publication  
PB01  Publication  
SE01  Entry into force of request for substantive examination  
SE01  Entry into force of request for substantive examination 